VOLUME 6 , ISSUE 3 ( July-September, 2020 ) > List of Articles
S Charuvi, Hiremathada Sahajananda
DOI: 10.5005/jp-journals-10045-00157
License: CC BY-NC 4.0
Published Online: 29-09-2021
Copyright Statement: Copyright © 2020; The Author(s).
Aim and objective: The main purpose of the study was to determine the effect of a bolus dose of etomidate on serum cortisol levels in patients undergoing laparoscopic cholecystectomy. As there are a lot of controversies regarding this, detailed research was carried out to find answers regarding the question as to whether etomidate suppresses the cortisol levels or not. Materials and methods: In this prospective interventional study, 31 ASA physical status I and II patients undergoing laparoscopic cholecystectomy were enrolled. Pre-anesthetic medication consisted of the tab. diazepam 5 mg the previous night and tab. ranitidine 150 mg the previous night and the next day morning at 5 am with sips of water. The patient was then induced with 0.4 mg/kg of etomidate intravenously. Skeletal muscle relaxant vancuronium of 0.1 mg/kg was administered. Intubation was performed with an appropriate endotracheal tube. Anesthesia was maintained with N2O, O2, and isoflurane. After surgery, the patient was reversed using neostigmine and glycopyrrolate. The patient was extubated when awake and then shifted to the recovery room and after one hour to the postoperative ward. Three venous samples, 2 mL each were drawn from each patient. The first blood sample T1 was drawn at 9 am on the day of the surgery before the induction of etomidate, the second blood sample T2 was 1 hour after the induction of etomidate which coincided with pneumoperitoneum, and the third blood sample T3 was drawn at 9 am the following morning. After the blood samples were collected in the red top vacutainers, they were allowed to clot naturally for about 30 minutes at room temperature after which tubes were centrifuged for 15 minutes at 1,000, 2,000, and 3,000 rpm, respectively, for the first, second, and third samples. After the separation of the serum, they were stored at −80°C until analysis. Sample analysis for cortisol estimation was done using Cobas E-411 machine using the electrochemiluminescence method. The statistical analysis was applied to analyze the demographic data, Chi-square test for categorical variables. Analysis was done using RM-ANOVA and significance was set at p < 0.05. Results: The statistical analysis showed the above table shows that males showed mean cortisol values of 11.48 ± 2.05 at time T1 which was at baseline, 9.78 ± 1.72 at time T2 which was at pneumoperitoneum, and 5.038 ± 4.22 at time T3 which was at 24 hours. The female patients showed mean cortisol values of 13.407 ± 2.33 at T1, 11.47 ± 2.65 at T2, and 7.065 ± 5.41 at T3. The combined mean cortisol levels of the patients were: 12.291 ± 1.57, 10.49 ± 1.52, and 6.085 ± 3.36 at intervals of T1, T2, and T3, respectively. According to the Student's t-test, the cortisol levels show that the p value (0.11) between T1 vs T2 does not show any significance. The p value (0.001) of T1 vs T3 is extremely significant and shows cortisol suppression and helps in proving the objective of the study. The p value (0.02) of T2 vs T3 was significant and shows that the cortisol levels are suppressed. Conclusion: Hence, this study showed that the cortisol levels are suppressed by a bolus dose of etomidate in patients undergoing laparoscopic cholecystectomy. It was not related to any adverse outcome. The major advantage of etomidate over other available intravenous induction agents is attributed to the remarkable cardiovascular stability it offers in patients with cardiac disease. It provides a “stress-free” state, in children which is of importance in high-stress surgeries like the Intracardiac repair of Tetralogy of Fallot using Cardiopulmonary Bypass. Its use probably could be restricted to those situations where it offers a clinical advantage over other available drugs until the clinical relevance of the adrenal suppression effects of etomidate is fully known.